A parabolic PDE
The heat equation on a long, thin rod is

du(x,r) = a2 9%u(x,1)
ot P x2

with boundary conditions

u(0,t) =0
ul,n) =0
u(x,0) = fix)

We solve this equation by the method of finite differences by replacing the derivative terms with

difference quotients on a set of grid points (xl- , tj):

M(xl',tj + k) - l/l(xl',tj)

%(xi,tj) = + O(k)
&(Xiatj) _ u(x; + h,tj) -2 u(xi,tj) + u(x; - h,tj) + O(hz)
ox’ K
Here the grid points are determined by the formulas
h=_L
m

where i ranges from O to m.
The forward difference method

Plugging these estimates into the PDE and using the notation w; ; for our estimates for u(x;t;) we get that

the w; ; satisfy a system of equations

Wija1 = Wij _ g2 Wit - 2w+ w;
k h2

1j —

Solving these equations for w; ;, | gives



2
Wijt1 = <1 - 2_0:2 k> w;j+ a? % (Wi-tj + Wit1)

h h
This can also be written as a simple matrix equation

with = A wi)
The initial conditions give us that
woj = 0
w,, =0

myj —

w;,0 = flx;)

)

Since all of the terms on the right hand side of equation (1) are known for j = 0, we can compute w; ;| for

all i. Similarly, we can compute all of the w; ; terms we want by just iterating over j and i.

In practice, though, this simple method does not work well, since the solution generated by this method

not numerically stable: small errors in the initial function f{x) can translate into large errors in our

estimate for u(x,t) for large ¢.
The backward difference method

An alternative approach is to use the difference quotient

u(xpt;) - u(x,t; - k) + 0%

ot

in the original equation. This changes our system of equations to

Wij = Wij1 _ g2 Wit - 2w+ w;
2

j —

k h
or

—lwi_1J+ (1 +2A)Wiz]'_ﬁwi+12j=wi,/’-1

where 1 = a2 ki,

Now to solve for w; ; for a given j and 1 < i < m-1 we have to solve a system of m-1 equations in m-1

unknowns.



A hyperbolic PDE
The wave equation for a vibrating string is

Qu(x,p) - a2 Qu(x,) =0
or 0x>

The boundary conditions for this problem specify that the string is fixed at both ends of the interval 0 <
x < [, and also specify the initial displacement and velocity of the string at time ¢ = 0:

u0,)) =u(l,t)=0
u(x,0) = f(x)
%(x,o) = g(x)

We solve this equation by the method of finite differences by replacing the derivative terms with

difference quotients on a set of grid points (xi , t-):

a_zu(xl-,tj) _ u(x;t; + k)-2 u(xpt;) + ulxpt; - k) 4 O(kz)
or K
&(xi’tj) _ u(x; + h,tj) -2 u(xi,tj) + u(x; - h,tj) + O(hz)
ox” s
Here the grid points are determined by the formulas
X; = ih
=Jk
h=_L
m

where i ranges from 0O to m.

Plugging these estimates into the PDE and using the notation w; ; for our estimates for u(x;,7;) we get that

the w; ; satisfy a system of equations

Wil = 2w+ Wi o2 Wit~ 2wt Wiy 0
2 2
k h

If we solve this equation for w; ;, | we get



2 2
Wi,j+1 :2(1 -A )Wl‘]'l‘ﬂ/ (Wi+1zj+wi'1zi)-wizi'l

This update rule allows us to compute an approximation for u(x;;, ) in terms of estimates at #; and 7; ;.

i’t]
The only problem with this scheme is the case j = 0. To compute estimates for u(x;,t;) we would need
values for the solution at #y, = 0 and ¢_; = -k. The boundary condition u(x,0) = f(x) gives us the first set of

values, but we don't have values to tell us what u is doing at r = -k.
One fix for this problem is to start with a power series expansion for u(x,t) in t about t = O:
2
u(epty) = u(xp0) + k 0u(x;,0) + £ 9%u(x,,0) + O(k")
ot 2 57

The first derivative term is given by one of the initial conditions. We can handle the second derivative

term by solving the differential equation for a_zu (x;,0):
ot

2
%u(x,0) = a2 9°u(x,0) = o 4 ()
or ox> dx’

Putting this all together gives us
_ az k2 n 3
u(x;ty) = u(x;,0) + k g(x;) + Tf (x) + Ok")
Thus we have
w;o =fx)
o) k2 ”
Wi =wio+ kglx)+ an (x)
2 2
le]_'_l:z(l'ﬂ/)wl‘]'l‘ﬂ/ (Wl'+1,j+wl' )'Wl'

'lzi zi'l



